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X-ray topographs of a new type have revealed fine fringes in the diffraction images of wedge-shaped 
parts of perfect and nearly perfect crystals. The fringes are analogous to those seen in electron 
microscope images of wedge-shaped parts of magnesium oxide crystals and can be interpreted ac- 
cording to the theory applicable to the electron case. Fringe spacing depends upon X-ray wavelength, 
wedge-angle, inclination of reflecting plane to the wedge surfaces, and the structure amplitude of 
the reflection. Discovery of these fringes shows that  (a) parts of real crystals behave as ideally perfect 
from the X-ray diffraction standpoint (b) the dynamical theory of diffraction may be applied quanti- 
tatively under practical experimental conditions, and (c) structure amplitudes of low-order reflec- 
tions may be determined by fringe-spacing measurements, without any need for measuring reflection 
intensities. Tests of the theory on prepared wedges of silicon and quartz indicate a slight systematic 
discrepancy of 4 to 5 % between calculated and observed values of structure amplitude, and suggest 
also that  Wei's (1935) F-values for quartz 10T1 and 1T22 are too low by 9% and 4% respectivcly. 
Experiments suggest that  to explain fully the observations some modification of the dynamical 
theory is required in the direction of allowing for a spherical wavefront of the incident beam. 

1. Introduct ion 

One of the  authors (A. R. Lang) has constructed an 
X-ray  spectrometer of a new type  which can be 
operated automat ical ly ,  and, using this apparatus ,  
has established new techniques of diffraction micro- 
rad iography which enable us to see individual  dislo- 
cations in crystals (Lang, 1958, 1959). During 
these exper iments  we found very  fine fringes in the 
diffract ion topographs of wedge-shaped parts  of a 
silicon crystal.  These fringes are quite similar  to those 
which were observed in electron microscope images of 
magnes ium oxide b y  Heidenreich ( 1942 ), Kinder  (1943) 
and  Hal l  (1948). We call them 'PendellSsung'  fringes 
because they  are due to an  in tens i ty  var ia t ion of 
wave field in the crystal  which was called the 'Pendel-  
15sung' effect by  Ewald  (1916). 

In  this  paper  we show various examples  of such 
fringes in l i th ium fluoride, silicon and quartz,  and 
in terpre t  them according to a theory which was 
developed for the electron case. Measurements  of 
fringe spacings combined with this theory give us a 
very  promising method  for determining the structure 
ampl i tude  of X- ray  reflections without  any  measure- 
men t  of X- ray  intensities. 

Our exper iments  indicate,  however, tha t  'Pendel-  
15sung' fringes in the X-ray  case are somewhat  dif- 
ferent  from those in the electron case from the stand- 
point  of diffraction phenomena.  In  the X-ray  case the 
wave propagat ion behavior  in the crystal  is more 
complicated. In  this paper  we present only experimen- 
ta l  facts and  a very  pre l iminary  approach towards an 
extended theory.  Still, we have concluded tha t  we 
mus t  modify  the usual  t r ea tmen t  of boundary  con- 
dit ions in the dynamica l  theory of diffraction, and 
mus t  also consider the incident  X-ray  beam as a 
spherical  wave. 

2. E x p e r i m e n t a l  
(i) Apparatus 
We have used two types  of apparatus .  The first, which 
we call A, is the  same as tha t  used in studies of 
individual  dislocations by  t ransmiss ion- type X- ray  
topographs called 'projection topographs '  (Lang, 
1959). The principle of this method  is i l lustrated in 
Fig. 1. The X-ray  beam is coll imated by  a slit system, 
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Fig. 1. Experimental arrangement for traverse experiments. 

S is the specimen crystal and P is a slit through 
which only the diffracted beam is allowed to pass to 
reach the  recording fi lm F.  Specimen and fi lm are 
moved back and forth together. Thus we can record on 
the same fi lm a diffraction topograph from a large 
area of crystal.  We refer to this type  of exper iment  as 
a ' t raverse exper iment ' ,  and to the pa t te rn  so obtained 
as a ' t raverse pat tern ' .  

Wi th  specimen and fi lm s ta t ionary we obta in  an- 
other type  of pa t te rn  to which section par ts  of a 
crystal contr ibute as shown in Fig. 2. We call this  type  
of exper iment  a 'section pat tern ' .  In  the  present  work 
we are interested in very  fine details of section pat terns  
and  sometimes we have studied the corresponding 
section pat terns  due to the t ransmi t t ed  beam. For  
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Fig. 2. Experimental  ar rangement  for section experiments. 

these purposes we use another apparatus which we 
call B. An incident beam of convergent monochro- 
matized X-rays was produced by a transmission-type 
bent quartz monochromator. The geometrical arrange- 
ment  of X-ray tube and monochromator was almost 
identical to tha t  used in previous experiments on 
lattice distortions.* (Kato, 1957, 1958a)~ The focused 
breadth of the K~I line was about 20E~ and the K~2 
was eliminated by a screen. To apparatus B there was 
also attached a device for moving the film and crystal 
automatically, as in apparatus A. Hence we could 
obtain similar traverse patterns, but with a mono- 
chromatized incident beam. 

(ii) Preparation of wedge-shaped crystals 
Preliminary traverse experiments were carried out 

to check crystal perfection, in particular the disloca- 
tion distribution. From dislocation-free parts of crys- 
tals wedge-shaped specimens were made by grinding. 
After tha t  the crystals were etched to remove disturbed 
surface layers. For this purpose CP-4 and 48% HF 
solution were used for silicon and quartz respectively. 
Wedge angles were measured by an optical method. 

(iii) Traverse experiments 
We have obtained many 'PendellSsung' fringe pat- 

terns corresponding to various reflection planes of 
various crystals. Fig. 3 shows the first one tha t  was 
obtained from a wedge-shaped part  of a silicon single 
crystal, using the 111 reflection. In  this case the wedge 
angle i~ about 40 °. Fig. 4 is an example of fringes 
from a prepared regular wedge of silicon, the wedge 
angle being 21 ° 20'. This type of pat tern was used for 
quanti tat ive studies to be described in § 4. Fig. 5 is 
a projection topograph of part  of a good-quality LiF 
crystal, taken with the 200 reflection. Many disloca- 
tions can be seen, but along the sub-grain boundaries 
'PendellSsung' fringes can also be distinguished. Fig. 6 

* In the present experiments a line source of X-rays is put  
parallel to the direction of the incident beam, because it is 
not  necessary to have a wide angular range of convergence, 
but  very desirable to get high intensity. 

is an example of fringes from a prepared wedge of 
quartz. The main fringes are parallel to the edge of 
the wedge. We can also see areas of higher intensity 
in which there are additional fine fringes. The in- 
tensi ty of these areas depends upon the particular net  
plane from which reflection is observed. I t  appears 
tha t  they represent plane defects, each of which divides 
the crystal into two wedge-shaped parts along which 
'PendellSsung' fringes are produced. 

Photographs were obtained by Ag Kal radiation 
using apparatus A and by Mo K a l  radiation using 
apparatus B. Experimental details are given in the 
legend of each photograph. 

(iv) Section experiments 
As explained above in (i), we obtained section pat- 

terns using a fine monochromatized beam. Fig. 7 is an 
example of such a pat tern : it is a 440 reflection from a 
silicon crystal. Image a is due to the diffracted beam 
and image b is due to the pr imary beam. In these 
patterns we see very interesting hook-shaped fringes. 
Light fringes in a correspond to dark fringes in b, 
and vice versa. This is an example of the complemen- 
tar i ty  of structure between diffracted and pr imary 
transmit ted beams which we have generally observed, 
and which is particularly striking in the images of 
individual dislocations obtained in section experi- 
ments. 

Similar patterns to Fig. 7 have been recorded on 
films placed far from the specimen. 

3. Theory 
The usual kinematic theory cannot be applied to the 
case of diffraction by large single crystals. For such 
problems the dynamical theory of diffraction in a 
three-dimensional lattice has been developed (see, 
for example, Zachariasen, 1945). In this theory we 
take into consideration the energy exchange between 
diffracted and t ransmit ted waves when a phase 
relationship is maintained between them. I t  is thus 
found that,  in passage through the crystal, the wave 
field of the primary beam at first decreases due to 
transfer of energy to the reflected beam, then energy 
is transferred back to the primary beam from the 
reflected beam, and so on. Hence the wave fields of 
both beams oscillate with a definite spatial periodicity 
within the crystal. Such an intensity modulation can 
be regarded as a sort of beat between plane waves. 
Actually, a more mathematical  t reatment  shows that  
each wave field can be expressed as the interference 
of two plane waves which have slightly different wave 
vectors. 

If the crystal is parallel plane-sided, as in the usual 
dynamical-theory treatment,  these two plane waves 
come out of the crystal with the same wave vector. 
Therefore the wave field is uniform outside the crystal. 
However, if the crystal has a wedge-shaped form the 
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Fig. 3. Silicon 'Pendel lSsung '  fringes: l i 1 reflection. 
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Fig. 4. An example  of silicon {311} series of exper iments .  
The wedge angle is 21 ° 20". The  edge direct ion is [110]. 
The incident  surface is ( l l l ) .  The reflecting ne t  plane is 
(31l). Configurat ion corresponds  to Case I of Fig. 8. 

1 r a m °  

Fig. 5. 1,ithium fluoride 200 refleo, tion. 
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Fig. 6. An example of quartz R - r  series. The wedge angle is l l  ° 16", wedge direction is the Y-axis of quartz. 
The incident surface is the X-plane. The reflecting net plane is (1011). Configuration corresponds to Case I of Fig. 9. 

J r a m .  

(a) (b) 

Fig. 7. Section patterns of silicon 440 reflection, (a) diffracted-beam pattern, (b) primary-beam pattern. 
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above two plane waves in the crystal emerge with 
different wave vectors, in a way analogous to double 
refraction in the optics of visible rays. This was pointed 
out first by  lV[. v. Laue (1940), and later by Sturkey 
(1948) and Kate  (1949) independently. Interference 
fringes may  thus be expected outside the crystal. 
Actually, two Laue spots corresponding to the two 
plane waves described above can be observed in the 
electron diffraction case (Cowley & Rees, 1946, 1947; 
Honjo, 1953, Honjo & Mihama, 1954), and the 
interference fringes have been observed in electron 
microscope images as described in § 1. The explanation 
of these fringes was given by  Kossel (1943) in principle 
and later by Kate  (1953) and Niehrs (1.954) in more 
detail. 

The pat terns we have obtained with X-rays are 
similar to those obtained with electrons, though the 
experimental conditions are very different. Since the 
angular range of reflection of the X-rays is very small, 
the crystal and film must  be moved simultaneously 
to obtain this kind of pa t tern  from an extended area 
of specimen when a narrow X-ray source is used. On 
the other hand, the electron microscope images are 
obtained by a single illumination from a point source. 
This is not a superficial difference in geometrical ar- 
rangement but  is quite essential from the diffraction 
standpoint.  More will be said about this in § 5. Never- 
theless it is of considerable interest to compare the 
experimental results of the X-ray case with a theory 
which was developed for the electron case. 

According to the dynamical theory for a large 
wedge-shaped crystal (Kate, 1949), the wave vectors 
of the two plane waves outside the crystal are 

K(g ~) -- K0 + 2~g + A0 {(y-(y2 + 1)½)re/cos 0 a 
+ (y + (y~ + l)½)v+/cos ~o} 

K(g~)= Ko+ 2z~p, + Ao{(y + (y2+ 1)½)re~COS Oa 
+ (y-(y~ + 1)+)v~/cos ~o} (1) 

where 
A0 = ~/c0Kl~] (cos 0does 00)½ • (2) 

The notation in equations (1) and (2) is almost the 
t same as tha t  used by Zachariasen (1945). ~0H is a 

H th  order Fourier coefficient of the polarizability, 
tha t  means, it  is proportional to a structure factor. 
y is a parameter  which shows an angular deviation 
of the incident beam from the Bragg angle. In  addi- 
tion, ve and va are respectively unit vectors normal 
to the incident and exit surfaces, 00 is the angle 
between ve and the diffracted beam and ~0 a is the 
angle between va and the diffracted beam. In  these 
expressions we have neglected the mean polarizability 
of the crystal (or zero-th order component of the 
Fourier series representation of the polarizability), 
because this has no appreciable effect on the inter- 
ference fringes. These formulae are derived directly 
from the electron case by appropriate changes of the 
quantities concerned. 

The difference A K of the two wave vectors is always 

approximately normal to the wave vectors K(g 1) and 
K(~ e) since their magnitude should be equal to ]K0[, 
the magnitude of the wave vector of the incident beam. 
Therefore, as we trace the interference pat tern  away 
from the crystal, the fringes move along parallel to 
the direction of the wave vectors K(g 1) and K(g 2). Hence, 
if we put  a recording film perpendicular to the re- 
flected beam, fringe spacings are given by 

A = 27~/[AK[ 

= 2/{K[~[((1  + y2) cos 0rices 00)½¢}. (3) 

In  equation (3) ~b is a geometric factor which can be 
written as 

I ~) Me Va 

[cos 0o c o s t a  

1 1 2 cos (vev.) ~+ 
= c ~ s i ~  + c o ~ o  dos 0o cos we! 

(4) 

where (Vega) is the wedge angle. 
A K is also always perpendicular to the edge of the 

wedge, since A K is in a plane determined by ve and Va 
and obviously the edge is perpendicular to this plane. 
This is what we observe experimentally, since the 
fringes always rim parallel to the edge of the wedge. 

Thus we see tha t  fringe spacings can be calculated 
theoretically from well-known quantities such as the 
fundamental  physical constants included in the ex- 
pression lv2~[, the X-ray wavelength, the structure 
amplitude, and geometrical quantities except for an 
unknown parameter  y. For the present we assume tha t  
y is equal to zero, and will consider this point further 
in § 5. 

For a comparison of the above theory with our ex- 
periments we have to introduce some formulae relating 

Case I ~ /  Case II 

/ / 
. t  

. t  

Case III Case IV / /  

f 
J 

Fig. 8. Four  different configurations for Si {311} and  quar tz  
{I-[22} series of experiments .  In  these eases 00, 0 ( / a n d  ~a 
are obta ined as follows (ef. Text  § 3): 

Case I : 00 = ~[2 -- cf -- OB, Oo -~ 00 -t- 20B,  q)G = OG -- (YeYa) ; 
Case I I :  epG=ze/2--cf-t- OB, Oa=cpG+(VeVa), 00= OG--2OB. 
Case I I I :  ~0G=~/2--~0+0B, OG=~G--(VeVa),  0 0 = 0 0 - - 2 0 B ;  
Case IV:  00-~]2--qO--0B,  06 = Oo+ 20B,  q)G = OGW('geVa), 

where 0B is the  Bragg angle, ~0 is the  angle between the  ne t  
plane and  a surface and (YeYa) is the  wedge angle. In  {311} 
series, ~ = 5 8  ° 31' and  in quartz  {1122} series ~0=42 ° 16'. 
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Case I Case If 
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Case IV  

Fig.  9. F o u r  dif ferent  conf igurat ions  for quar tz  R - r  series. 
z is the  direct ion of a ver t ica l  line and  Y and  Z are the  
Y- and  Z-axis  of quar tz  respect ively .  In  these  cases 00, 0a 
and  ~G are de te rmined  as follows (cf. Tex t  § 3): 

Case I: 0 o= OB, Oa= OB, 
cos ~ u = c o s  0B cos (VeVa)--sin 0/~ sin (VeVa) sin Q; 

Case I I :  cos 0 0 = c o s  0 B ( 1 - s i n  ~" (VeVa) sin 2 ~)½ 
uu shl OB sJ.D. (1JeVa) sin Q, 
cos 0a=cos 0~(1-sin 2 (VeVa) sin 2 ~)½ 
-- Sin OB siD- (YeYa) sin 0, cos ~O= Cos OB COS ¢ ; 

Case I I I :  00= 0B, 0 a =  0B, cos q~6,=cos 0B cos (yelIa) 
~u Sin OB Sin (Vella) Sin Q; 

Case IV :  cos 0o=COS 0B(1- - s in  2 (YeVa) sin 2 Q) ½ 
--Sin 02~ sin (Vel~a)sin O, 

cos 0 a = c o s  0B(1 - -s in  2 (l~elJa) sin 2 Q)½ 
~c Sin 0/3 sin (VeVa) sin ~, cos ~0G = cos OB cos ~ ; 

where  0B is the  Bragg  angle and  O is the  angle be tween  
z and  Z,  the  angle ¢ is de te rmined  b y  t an  ¢ = t an  (YeYa)coso. 

to the geometric conditions. Firstly we have to find 
the angles 00, 0a and ~c. In the following we deal with 
two experimental situations: (a) ve and Va are in the 
horizontal plane, in other words the edge of the wedge 
is vertical, but the net plane is oblique to both crystal 
surfaces; and (b) the edge is oblique to a vertical line 
but the net plane is perpendicular to one of the 
crystal surfaces, in other words ve or v~ lies in the net 
plane. In our experiments the plane of the ribbon- 
shaped incident beam was always vertical and the 
mean direction 0f the beam was horizontal. The normal 
to the net plane was always kept in the horizontal 
plane. 

In condition (a) we can obtain cos 00, etc., for four 
different cases which are illustrated in Fig. 8. The 
results are shown in the legend. In case (b) the con- 
figurations are a little complicated, but still we can 
obtain cos 00, etc., for the practically-used four cases 
as shown in Fig. 9, with the results summarized in the 
legend. 

Next we have to consider the effect of vertical 
divergence of the incident beam. The X-ray source is 

placed at a finite distance from the specimen therefore 
the X-rays diverge vertically. We cannot put the 
recording film just behind the specimen because of the 
screen needed to cut off the direct beam. As a first 
approximation we consider that  the observed pattern 
is a projection on to the film of the theoretical pattern 
located in the plane of the specimen. This assumption 
was verified by measuring the fringe separations in 
section patterns obtained with different specimen-to- 
film distances. Thus it is necessary to make a small but 
appreciable correction to the fringe-spacing values 
given by equation (3). 

z 

B, \ \  

L 
0 ~A 

Fig. 10. Change of fringe dis tances  due  to  ver t ica l  d ivergence  
of an incident  beana. 

In Fig. 10, z is the vertical axis, ABe is a fringe line 
of the ideal pattern and OA is a horizontal line. Since 
a vertical distance is elongated but a horizontal dis- 
tance is not changed in the observed pattern, the 
corresponding observed fringe line should be the dotted 
line A B .  Therefore the observed fringe separation 
~ =O D  is ~=~0 cos a/cos a0 where ~o=ODo is the 
fringe separation in the ideal pattern corresponding 
to the observed ~, and ~ and a0 are the angles between 
the z-axis and fringe lines in observed and ideal 
patterns, respectively. However, 

OBo tan ~o = OB tan 
and OB = OBo(D + L) /D 

where D is the distance from X-ray source to specimen 
and L is the specimen-to-film distance. 

Hence 
tan ~ = tan ~ o D / ( D + L ) .  (5) 

As an example, if we put D_~ 30 cm., L ~_ 2.5 cm. and 
a = 4 5  ° as reasonable figures, the correction amounts 
to between two and three per cent. 

4. Compar i son  between theory and experiment 

Equation (3) shows that. fringe separations depend 
upon the wavelength A and the geometrical factors 
(cos Oa/cos 0o) ½ and ~. We performed three series of ex- 
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periments to check these points. The first two series 
were carried out to test  the geometric factors, using 
Me Ka l  radiation, and the third was concerned with 
wavelength effects, using Me Kal and Ag Ka~ radia- 
tion. 

(i) Silicon {311} series 
A wedge crystal of silicon was made from a {111} 

plate. Using this crystal we obtained traverse pat terns 
for four different geometrical conditions of reflection, 
one such pat tern  being shown in Fig. 4. Details of the 
wedge and of the geometric configurations are given 
in the legends of Figs. 4 and 8. Experimental results 
and calculated values of fringe separations are listed 
in Table 1. The calculations are based upon a value 

Table 1. Silicon {311 } series of experiments 
Fr inge  spacing 

Case Ne t  plane Obs.,  ram. Calc., tara. Calc./Obs. 

I ( 3 i l )  0.107 0-114 1.06 
II (131) 0-059 0.061 1.03 

I I I  (311) 0.098 0.103 1.05 
IV  (131) 0-047 0.053 1.15 

of the atomic scattering factor of silicon, 8.2, which 
was obtained by graphical interpolation from the data  
for neutral  silicon (Peiser, Rooksby & Wilson, 1955). 
For the sin 0/~ value of the 311 reflection, bonding- 
electron configuration has little effect on the f-value. 
Still, the above value might have an error of a few 
per cent. Moreover, there is the already-mentioned 
doubt concerning the parameter  y. Therefore we should 
hardly expect complete agreement between calculated 
and experimental values. Their ratios, however, should 
coincide with each other because an X-ray reflection 
of the same index is used throughout this series of 
experiments. Actually the agreement is fairly good, 
except in Case IV. ttere, however, fringe separations 
are very small and the fringes themselves are very 
faint so tha t  this discrepancy may be at t r ibuted to 
experimental errors in measuring the fringe separa- 
tions. 

(ii) Quartz {1122} series 
Similar experiments were carried out using a quartz 

crystal. A wedge was made from an X-cut plate. The 
wedge angle was l l  ° 16' and the wedge axis was the 
Y-axis of the quartz. Four configurations of reflection 
were considered in a similar way to the silicon {311} 
series. In the present case, however, the reflections 
1152 and 1-i22 have slightly different structure am- 
plitudes. According to Wei (1935) they are 21.6 and 
21.9 respectively. Still, changes of fringe spacing are 
almost all due to geometric effects, with a minor 
dependency upon net plane. The ratios of observed to 
calculated values should coincide for each group of 
experiments carried out for the same net plane. More- 
over, if Wei's values of structure factor are correct, 

the ratios of the two groups should also agree with 
each other. As shown in Table 2, a nice agreement is 
obtained within each group, though a little systematic 
discrepancy is noticed. 

Table 2. Quartz 1122 series of experiments 
Fringe  spacing 

r 

Case Ne$ plane Obs.,  ram. Calc., ram. Cale./Obs. 

I 1122 0.168 0.179 1.06 
I I  1122 0.099 0.103 1.04 

I I I  1122 0.151 0.166 1-10 
IV  1122 0.089 0.091 1.03 

(iii) Quartz R and r series 
We have obtained several traverse pat terns using 

two different radiations, the wedge crystal being the 
same as tha t  used in the {1152} series of experiments. 
Geometrical details are explained in the legend of 
Fig. 6, which shows a typical pa t te rn  of this series, 
and in Fig. 9. We have compared the R and r reflec- 
tions using both Me Ka l  and Ag Kal .  

For different radiations the geometrical factors 
change slightly as a consequence of the change in 
Bragg angle. This effect, however, is of the order of 
3% or less. Consequently this series of experiments 
serves directly to check the wavelength effect. The 
results are shown in Table 3. In  this case the ratios 

Table 3. Quartz R-r series of experiments 
(a) W a v e  length  dependency .  

Fr inge  spacing,  ram. 
^ ~ R a t i o  

"Ag K a  1 Me K a  1 Ag/Mo 

R obs. 0.291 0.231 1"26 
calc. 0.307 0.242 1.27 

r obs.  0.428 0.351 1-22 
ta lc .  0.503 0-394 1.28 

of Ag-fringe separations to Mo-fringe separations 
should be independent of structure amplitude and 
should correspond with the corresponding calculated 
ratios. Moreover, since the R and r planes are both 
normal to the X-cut plate, and their Bragg angles 
are the same, their geometric factors are almost equal. 
Therefore the ratios for the R and r reflections should 
be equal. These points are well satisfied experimentally 
as shown in the last column of Table 3. 

We have thus obtained a good agreement between 
experimental and theoretical dependence on wave- 
length and geometrical factors. We find, however, two 
systematic discrepancies between calculated and ob- 
served values. First, all observed values of fringe 
spacing are somewhat less than the values calculated 
by equation (3) assuming y = 0. This suggests tha t  we 
should take a slightly larger value for the parameter y. 
However, the section experiments and our preliminary 
interpretation of them show tha t  such an a t tempt  to 
improve the theory has no reliable basis. 

Secondly, the ratio of calculated to observed value 



792 A STUDY OF PENDELLOSURIG FRII~GES II~ X-RAY DIFFRACTION 

is systematically larger for some net planes than for 
others. A possible explanation of this discrepancy is 
that  the values of structure amplitude adopted above 
are not adequate. In particular, the quartz R - r  series 
of experiments shows that this explanation is very 
plausible. In Table 4 we show the ratio of calculated 

Table 4. Quartz  R - r  series o f  exper imen ts  
(b) The ratio of calculated fringe spacings 

to the observed values 

Net plane Me Ka I Me Ko: 1 Ag K a  1 

r 1"12.o (I) 1.121 (II) 1.17.5 (I) 
R 1"047 (III) 1.034 (IV) 1.054 (III) 

to experimental values of fringe separations for the 
r and R reflections, with Me K0¢1 and Ag Kc~l radia- 
tions, and with geometric configurations (indicated 
by Roman numerals) as explained in Fig. 9. The 
ratio for the r-reflection is systematically larger than 
that  for the R-reflection. As the R and r reflections 
have the same Bragg angle, and moreover, the geo- 
metrical arrangement of the r(I) case is quite similar 
to that  of the R(IV) case, and of the R(III) case to 
that  of the r(II) case, therefore we can find no reason- 
able way to explain this discrepancy other than to 
assume a different value of the structure amplitude 
of the r-plane. Thus Fr should be larger than Wei's 
value at least by an amount necessary to decrease the 
ratio of calculated to observed values to 1.05, the 
average value of the ratio for the R-reflection. This 
amount is about 9 %. 

In the quartz {]-122} series, the ratios in cases I and 
I I I  are a little larger than in cases II  and IV. This 
suggests that  the structure amplitude of the 1T22 
reflection should be larger than Wei's value by about 
4%. 

We arrive thus at the conclusions, that  the structure 
amplitude of reflections from the r and (1122) planes 
should be changed by several per cent, and that  in 
spite of this, there remains a small systematic dis- 
crepancy between all experimental and calculated 
values of the order of four to five per cent. This latter 
point we consider in § 5. 

5. D i s c u s s i o n  

The fact that  'PendellSsung' fringes can be observed 
in the X-ray case is significant in three respects, which 
we can summarize as follows: 

(a) I t  is probably the most direct demonstration 
possible that  an actual crystal can be considered 
ideally perfect from the standpoint of X-ray diffrac- 
tion. In other words, this kind of observation may be 
used to prove the perfectness of a crystal. For example, 
we found a few 'PendellSsung' fringes along grain 
boundaries as shown in Fig. 5. This shows that  elastic 
distortion of the lattice around grain boundaries is 
confined within a very thin region, as expected from 
dislocation theory (Kate & Lang, in preparation). 

In another example, as described in § 2 (iii), we could 
infer the existence of a new type of plane defect in 
quartz crystals through an observation of 'Pendel- 
15sung'. Here the plane defect is detected by the loss 
of phase relationship it causes. 

(b) From the standpoint of X-ray diffraction phe- 
nomena, study of 'PendellSsung' fringes is important 
for testing how extensively the dynamical theory can 
be applied to an actual crystal under practical ex- 
perimental conditions. The fair agreement between 
theory and experiment as described in § 3 shows that  
the ordinary dynamical theory is satisfactory in 
essential points. 

(c) The measurement of fringe spacings gives us the 
possibility of determining precisely the structure 
amplitude of low-order reflections. The usual method 
for such a determination, the measurement of intensity 
of reflection, has always some uncertainty because the 
intensities of low-order reflections depend to such a 
large extent upon the perfectness of the crystal, and 
we have no reliable theory for predicting the intensity 
expected from real crystals. Some methods have been 
proposed which have a more reliable basis, such as the 
asymmetric reflection method (Gay, 1952) and the 
polarized X-rays method (Ramasechan & Rama- 
chandran, 1953). These procedures have some ad- 
vantages but their accuracy seems to be about +_ 10 %, 
and intensity measurements must still be used. 

On the other hand, the method described in this 
paper enables us to estimate structure amplitudes 
from measurement of fringe separations and a wedge 
angle, without using any intensity measurement. As 
pointed out in § 4, at the present stage there seems to 
be a small systematic discrepancy of 4 to 5% in 
obtaining an absolute value of the structure amplitude. 
If this discrepancy can be removed we might be able 
to obtain structure amplitudes with an accuracy of 
+ 1% in favorable cases such as the quartz R and r 
reflections, as shown in Table 4. 

As yet we cannot explain this discrepancy. An 
allowance for thermal vibration would not reduce it. 
Anomalous dispersion acts in the right way to reduce 
it, but it is a very small effect, and the discrepancy, 
moreover, is the same for both Ag and Me radiations. 
Actually, we must regard the present theory as 
temporary, as will be pointed out below. 

In the section experiments we obtained very in- 
teresting patterns due to both the di~fractecl beam 
and the primary beam, as shown in Fig. 7. The in- 
tensity distributions of these patterns are complemen- 
tary to each other: a white line in the one correspond- 
ing to a black line in the other, and vice versa. This 
may easily be understood if we consider the energy 
exchange between primary and diffracted beams. I t  
seems worthwhile to notice here that  the usual electron 
microscope image (bright field image) corresponds to 
the primary-beam pattern, and the dark field image 
corresponds to the diffraction pattern. With electrons 
we can observe 'PendellSsung' fringes in both cases. 
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In the electron case section patterns cannot be 
obtained. In  the X-ray case, section patterns are quite 
fundamental  because traverse patterns are just super- 
imposed section patterns. Thus it is very desirable to 
gain a satisfactory understanding of section patterns. 

The section patterns cannot be explained by the 
dynamical  theory described in the prevailing text- 
books (for example Zachariasen, 1945; James, 1954), 
because this concerns the intensity of a plane wave 
which is associated with a wave vector or the intensity 
distributions in a region which is less than the width 
of the wave front of a plane wave as in Laue's ex- 
planation of Kossel patterns (Laue, 1935). 

In section patterns we have to consider the intensity 
distributions in a region much larger than an incident 
beam size. For this reason we have to consider the 
energy flow in a crystal. According to the recently 
developed theories (Kato, 1952, 1958(b) ; v. Laue, 1952, 
1953; Ewald, 1958), if reflected waves occur, the 
energy flows in the direction of the normal to the 
dispersion surface characteristic of the reflection. 
Thus we expect that  the X-rays go through the crys- 
tal in two different directions corresponding to the two 
branches of the dispersion surface. These directions 
are determined by the direction of the incident plane 
wave (the parameter  y) and always lie between the 
direction of the direct beam and of the reflected beam 
expected by the Bragg relation. In  our actual ex- 
periments, however, the X-ray energy goes through 
the crystal within the whole range of directions be- 
tween the two above-mentioned ones, because the 
incident beam is not strictly collimated and so its 
angular divergence covers the whole angular range in 
which the incident beam is reflected appreciably. Thus 
we expect section patterns to have a definite width 
appropriate to the crystal shape and Bragg angle as 
shown in Fig. 2. A more detailed t reatment  of this 
point will be given in another paper (Kato, in prepara- 
tion). 

The theory which was developed for electrons 
(equation (3)) assumes that  interference occurs be- 
tween two beams which are excited by one incident 
plane wave specified by a parameter y. This is per- 
missible in the case of electrons because the wave 
fronts of the two beams are large enough to overlap. 

With  X-rays these conditions are not satisfied. 
Actually section patterns show that  interference is 
occurring between two beams which propagate in the 
same direction in the crystal, and which are two 
elements of a spherical wave front corresponding to 
parameters y and - y .  Thus the theory developed for 
electrons seems inadequate for the interpretation of 
section patterns. Hence the small discrepancy between 
the theory and experiments, as detailed in § 4, can 
not be removed by simply giving y in (3) a non-zero 
value. 

The above considerations lead us to the important  
conclusion that  either the boundary conditions or the 
assumption of a plane wave as incident in the usual 

dynamical  theory have to be modified because other- 
wise we cannot obtain in the general case interference 
between two waves propagating in the same direction 
in the crystal. While further discussion of this point 
will be postponed, it seems worthwhile to point out 
that  the usual theory should give us a nearly correct 
result as long as we are concerned with the interference 
fringes due to the two beams which propagate in the 
direction corresponding to y=O. I t  is also expected 
that  the amplitude of the interference pattern in a 
section experiment is a maximum along a line cor- 
responding to this direction. The authors believe that  
this is the reason why the above theory could predict 
the fringe separations quite well. 
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This  t r e a t m e n t  is i n t e n d e d  for  c o m p l e x  s t r u c t u r e s  w h e r e  c o n v e n t i o n a l  r e f i n e m e n t  is imposs ib le .  
A m e t h o d  is de sc r i bed  for  assess ing  t h e  e r rors  w h i c h  ar ise  in a p p l y i n g  t h e  i s o m o r p h o u s  r e p l a c e m e n t  
m e t h o d .  B o t h  e r rors  d u e  to  n o n - i s o m o r p h i s m  a n d  o b s e r v a t i o n a l  e r rors  a re  cons ide red .  P r o b a b i l i t y  
f u n c t i o n s  are  d e r i v e d  w h i c h  give,  in t h e  c e n t r o s y m r n e t r i c  case,  t h e  p r o b a b i l i t y  of a co r r ec t  s ign 
d e t e r m i n a t i o n ,  a n d  in t h e  n o n - c e n t r o s y m m e t r i c  case t h e  r e l a t i ve  p robab i l i t i e s  of d i f f e r e n t  phases .  
T h e s e  p robab i l i t i e s  m a y  be  u s e d  to  ca l cu l a t e  a ' bes t '  F o u r i e r ,  in w h i c h  t h e  e r rors  in e l ec t ron  d e n s i t y  
a re  m i n i m i z e d ,  a n d  also to  e s t i m a t e  t h e  r .m.s ,  e r ro r  in th i s  ' bes t '  F o u r i e r .  

There are two steps in the application of the isomor- 
phous replacement method. The first is the determina- 
tion of the position of the outstanding features 
(usually a small number of heavy atoms) which dif- 
ferentiate a pair of isomorphous structures. The contri- 
bution fc of this part of the structure to the structure 
factors may then be calculated. The second step is 
the use of these calculated contributions to determine 
the phases of the reflex'ions. This is done by c0mpuring 
them with the observed intensity differences. In this 
way the structure may be determined. 

This paper is concerned with the second step. There 
will be many reflexions for which fc is very small. 
The determination of phase will be correspondingly 
poor. How should these reflexions be treated? In 
non-centrosymmetric structures, as is well known, 
unambiguous phase determinations are possible only 
if at least three isomorphous compounds are available. 
How should the results from the two pairs be com- 
bined? With simple structures where atoms are 
resolved, a trial structure can be obtained, and refine- 
ment made, for instance by the least-squares method. 
With a large protein, there is no immediate prospect 
of resolving the individual atoms and therefore no 
way of refinement from a trial structure. The accuracy 
of the final Fourier is dependent on the best choice 
of weights and phases during the second step of the 
calculation. There will be cases of intermediate com- 
plexity where the right trial structure will be found 
only if the second step is done accurately enough. 

We will describe a method for treating this question 
as rigorously as possible. A structural study where the 
method has been put to practical use has been published 
elsewhere (Blow, 1958). 

Est imat ion  of e r ro r  

The errors with which we are concerned are those 
which arise in the use of the isomorphous replacement 
method. I t  will be assumed that  the 'true' structure 
would be the Fourier transform of accurately observed 
structure factors, given the proper phases. Errors 
which arise due to series termination and extinction 
are not considered. 

Let ~', FB be the structure lactors o~ two isomor- 
phous compounds, the latter containing additional 
heavy atoms. We will define 

fB-- F B - F .  (1) 

The basis of the isomorphous replacement method is 
to calculate an approximation to fH, which we will 
call fc, usually by assuming the differences are entirely 
due to heavy atoms whose coordinates have been 
determined. (1) then gives information about the 
phases. 

Centrosymmetric case 

If the structures are centrosymmetric, then F, Fn, 
fH, f~ are all real. Either 

or  
If~l = IFB- FI (2a) 

If~l = IF~+ FI (2b) 

the latter case arising only when the signs of Fn and 
F are different. If we exclude all cases where 
FH+F<fc(000),  the maximum possible value of fc, 
we can approach certainty that  (2a) applies. In these 
cases, a direct assessment of error may be made. 


